Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment
نویسندگان
چکیده
Hydrogenovibrio bacteria are ubiquitous in global deep-sea hydrothermal vents. However, their adaptations enabling survival in these harsh environments are not well understood. In this study, we characterized the physiology and metabolic mechanisms of Hydrogenovibrio thermophilus strain S5, which was first isolated from an active hydrothermal vent chimney on the Southwest Indian Ridge. Physiological characterizations showed that it is a microaerobic chemolithomixotroph that can utilize sulfide, thiosulfate, elemental sulfur, tetrathionate, thiocyanate or hydrogen as energy sources and molecular oxygen as the sole electron acceptor. During thiosulfate oxidation, the strain produced extracellular sulfur globules 0.7-6.0 μm in diameter that were mainly composed of elemental sulfur and carbon. Some organic substrates including amino acids, tryptone, yeast extract, casamino acids, casein, acetate, formate, citrate, propionate, tartrate, succinate, glucose and fructose can also serve as carbon sources, but growth is weaker than under CO2 conditions, indicating that strain S5 prefers to be chemolithoautotrophic. None of the tested organic carbons could function as energy sources. Growth tests under various conditions confirmed its adaption to a mesophilic mixing zone of hydrothermal vents in which vent fluid was mixed with cold seawater, preferring moderate temperatures (optimal 37°C), alkaline pH (optimal pH 8.0), microaerobic conditions (optimal 4% O2), and reduced sulfur compounds (e.g., sulfide, optimal 100 μM). Comparative genomics showed that strain S5 possesses more complex sulfur metabolism systems than other members of genus Hydrogenovibrio. The genes encoding the intracellular sulfur oxidation protein (DsrEF) and assimilatory sulfate reduction were first reported in the genus Hydrogenovibrio. In summary, the versatility in energy and carbon sources, and unique physiological properties of this bacterium have facilitated its adaptation to deep-sea hydrothermal vent environments.
منابع مشابه
Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea.
The chemical stress factors for microbial life at deep-sea hydrothermal vents include high concentrations of heavy metals and sulfide. Three hyperthermophilic vent archaea, the sulfur-reducing heterotrophs Thermococcus fumicolans and Pyrococcus strain GB-D and the chemolithoautotrophic methanogen Methanocaldococcus jannaschii, were tested for survival tolerance to heavy metals (Zn, Co, and Cu) ...
متن کاملDiversity and characterization of bacteria associated with the deep-sea hydrothermal vent crab Austinograea sp. comparing with those of two shallow-water crabs by 16S ribosomal DNA analysis
For deep-sea hydrothermal vent crabs, recent investigations have revealed some epibiotic bacteria, but no study has described the bacterial community associated with the gill and intestine. In this study, the microbiota attached to the gill and intestine of the hydrothermal vent crab Austinograea sp. and two shallow-water crab species (Eriocheir sinensis and Portunus trituberculatus) were compa...
متن کاملPhysiological and Genomic Features of a Novel Sulfur-Oxidizing Gammaproteobacterium Belonging to a Previously Uncultivated Symbiotic Lineage Isolated from a Hydrothermal Vent
Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemoli...
متن کاملAdaptations of hydrothermal vent organisms to their environment
Introduction The deep sea hydrothermal vents are one of the most unusual habitats found on earth (review in Humphris et al. 1995). Vents are surrounded by a dense community which is supported by primary production through chemoautotrophic bacteria. Most of this fauna is composed of sessile animals that harbor bacteria as intracellular symbionts. Such geothermally-driven communities are dependen...
متن کاملDraft genome sequence of Caminibacter mediatlanticus strain TB-2T, an epsilonproteobacterium isolated from a deep-sea hydrothermal vent
Caminibacter mediatlanticus strain TB-2(T) [1], is a thermophilic, anaerobic, chemolithoautotrophic bacterium, isolated from the walls of an active deep-sea hydrothermal vent chimney on the Mid-Atlantic Ridge and the type strain of the species. C. mediatlanticus is a Gram-negative member of the Epsilonproteobacteria (order Nautiliales) that grows chemolithoautotrophically with H(2) as the energ...
متن کامل